Contents

1. Introduction 3

2. Benefits of the block battery 4
 2.1 Complete reliability 4
 2.2 Long cycle life 4
 2.3 Exceptionally long lifetime 4
 2.4 Low maintenance 4
 2.5 Wide operating temperature range 4
 2.6 Fast recharge 4
 2.7 Resistance to mechanical abuse 4
 2.8 High resistance to electrical abuse 4
 2.9 Simple installation 4
 2.10 Extended storage 4
 2.11 Well proves pocket plate construction 4
 2.12 Environmentally safe 4
 2.13 Low life-cycle cost 4

3. Electrochemistry of nickel-cadmium batteries 5

4. Construction features of the block battery 6
 4.1 Plate assembly 7
 4.2 Separation 8
 4.3 Electrolyte 8
 4.4 Terminal pillars 9
 4.5 Venting system 9
 4.6 Cell container 9

5. Battery types and applications 10
 5.1 Type L 11
 5.2 Type M 11
 5.3 Type H 11
 5.4 Choice of type 11

6. Operating features 12
 6.1 Capacity 12
 6.2 Cell voltage 12
 6.3 Internal resistance 12
 6.4 Effect of temperature on performance 13
 6.5 Short-circuit values 14
 6.6 Open circuit loss 14
 6.7 Cycling 14
 6.8 Effect of temperature on lifetime 15
 6.9 Water consumption and gas evolution 16

7. Battery sizing principles in stationary standby applications 17
 7.1 The voltage window 17
 7.2 Discharge profile 17
 7.3 Temperature 17
 7.4 State of charge or recharge time 18
 7.5 Ageing 18
 7.6 Floating effect 18

8. Battery charging 19
 8.1 Charging generalities 19
 8.2 Constant voltage charging methods 19
 8.3 Charge acceptance 20
 8.4 Charge efficiency 22
 8.5 Temperature effects 22
 8.6 Commissioning 22

9. Special operating factors 23
 9.1 Electrical abuse 23
 9.2 Mechanical abuse 23

10. Installation and operating instructions 24
 10.1 Receiving the shipment 24
 10.2 Storage 24
 10.3 Electrolyte / cell oil 25
 10.4 Installation 25
 10.5 Commissioning 25
 10.6 Charging in service 26
 10.7 Periodic maintenance 27
 10.8 Changing electrolyte 27

11. Maintenance of block batteries in service 28
 11.1 Cleanliness/mechanical 28
 11.2 Topping-up 28
 11.3 Capacity check 29
 11.4 Recommended maintenance procedure 29

12. Disposal and recycling 30
1. Introduction

The nickel-cadmium battery is the most reliable battery system available in the market today. Its unique features enable it to be used in applications and environments untenable for other widely available battery systems.

It is not surprising, therefore, that the nickel-cadmium battery has become an obvious first choice for users looking for a reliable, long life, low maintenance system.

This manual details the design and operating characteristics of the Saft Nife pocket plate block battery to enable a successful battery system to be achieved. A battery which, while retaining all the advantages arising from nearly 100 years of development of the pocket plate technology, can be so worry free that its only major maintenance requirement is topping-up with water.
2. Benefits of the block battery

2.1 Complete reliability
The block battery does not suffer from the sudden death failure associated with the lead acid battery (see section 4.1 Plate assembly).

2.2 Long cycle life
The block battery has a long cycle life even when the charge/discharge cycle involves 100% depth of discharge (see section 6.7 Cycling).

2.3 Exceptionally long lifetime
A lifetime in excess of twenty years is achieved by the Saft Nife block battery in many applications, and at elevated temperatures it has a lifetime unthinkable for other widely available battery technologies (see section 6.8 Effect of temperature on lifetime).

2.4 Low maintenance
With its generous electrolyte reserve, the block battery reduces the need for topping-up with water, and can be left in remote sites for long periods without any maintenance (see section 6.9 Water consumption and gas evolution).

2.5 Wide operating temperature range
The block battery has an electrolyte which allows it to have a normal operating temperature of from -20°C to +50°C (-4°F to +122°F), and accept extreme temperatures, ranging from as low as -50°C (-58°F) to up to +70°C (+158°F) [see section 4.3 Electrolyte].

2.6 Fast recharge
The block battery can be recharged at currents which allow very fast recharge times to be achieved (see section 8.3 Charge acceptance).

2.7 Resistance to mechanical abuse
The block battery is designed to have the mechanical strength required to withstand all the harsh treatment associated with transportation over difficult terrain (see section 9.2 Mechanical abuse).

2.8 High resistance to electrical abuse
The block battery will survive abuse which would destroy a lead acid battery, for example overcharging, deep discharging, and high ripple currents [see section 9.1 Electrical abuse].

2.9 Simple installation
The block battery can be used with a wide range of stationary and mobile applications as it produces no corrosive vapors, uses corrosion-free polypropylene containers and has a simple bolted connector assembly system (see section 10 Installation and operating instructions).

2.10 Extended storage
When stored in the empty and discharged state under the recommended conditions, the block battery can be stored for many years (see section 10.2 Installation and operating instructions).

2.11 Well-proven pocket plate construction
Saft has nearly 100 years of manufacturing and application experience with respect to the nickel-cadmium pocket plate product, and this expertise has been built into the twenty-plus years’ design life of the block battery product (see section 4 Construction features of the block battery).

2.12 Environmentally safe
Saft operates a dedicated recycling center to recover the nickel, cadmium, steel and plastic used in the battery [see section 12 Disposal and recycling].

2.13 Low life-cycle cost
When all the factors of lifetime, low maintenance requirements, simple installation and storage and resistance to abuse are taken into account, the Saft Nife block battery becomes the most cost effective solution for many professional applications.
3. Electrochemistry of nickel-cadmium batteries

The nickel-cadmium battery uses nickel hydroxide as the active material for the positive plate, and cadmium hydroxide for the negative plate.

The electrolyte is an aqueous solution of potassium hydroxide containing small quantities of lithium hydroxide to improve cycle life and high temperature operation.

The electrolyte is only used for ion transfer; it is not chemically changed or degraded during the charge/discharge cycle. In the case of the lead acid battery, the positive and negative active materials chemically react with the sulphuric acid electrolyte resulting in an ageing process.

The support structure of both plates is steel. This is unaffected by the electrolyte, and retains its strength throughout the life of the cell. In the case of the lead acid battery, the basic structure of both plates is lead and lead oxide which play a part in the electrochemistry of the process and are naturally corroded during the life of the battery.

The charge/discharge reaction of a nickel-cadmium battery is as follows:

\[
\text{discharge:} \quad 2 \text{NiOOH} + 2\text{H}_2\text{O} + \text{Cd} \rightarrow 2 \text{Ni(OH)}_2 + \text{Cd(OH)}_2
\]

During discharge the trivalent nickel hydroxide is reduced to divalent nickel hydroxide, and the cadmium at the negative plate forms cadmium hydroxide.

On charge, the reverse reaction takes place until the cell potential rises to a level where hydrogen is evolved at the negative plate and oxygen at the positive plate which results in water loss.

Thus, through its electrochemistry, the nickel-cadmium battery has a more stable behavior than the lead acid battery, giving it a longer life, superior characteristics and a greater resistance against abusive conditions.

Nickel-cadmium cells have a nominal voltage of 1.2 V.

Unlike the lead acid battery, there is little change in the electrolyte density during charge and discharge. This allows large reserves of electrolyte to be used without inconvenience to the electrochemistry of the couple.
4. Construction features of the block battery

The cells are welded together to form rugged blocks of 1-6 cells depending on the cell size and type.

- **Cell container**
 - Material: translucent polypropylene.

- **Plate group bus**
 - Connects the plate tabs with the terminal post. Plate tabs and terminal post are projection-welded to the plate group bus.

- **Plate tab**
 - Spot-welded both to the plate side-frames and to the upper edge of the pocket plate.

- **Separating grids**
 - Separate the plates and insulate the plate frames from each other. The grids allow free circulation of electrolyte between the plates.

- **Flame-arresting vents**
 - Material: polypropylene.

- **Plate frame**
 - Seals the plate pockets and serves as a current collector.

- **Plate**
 - Horizontal pockets of double-perforated steel strips.

- **Protective cover**
 - to prevent external short-circuits
 - in line with EN 50272-2 (safety) with IP2 level
4.1 Plate assembly
The nickel-cadmium cell consists of two groups of plates, the positive containing nickel hydroxide and the negative containing cadmium hydroxide.

The active materials of the Saft Nife pocket plate block battery are retained in pockets formed from steel strips double-perforated by a patented process.

These pockets are mechanically linked together, cut to the size corresponding to the plate width and compressed to the final plate dimension. This process leads to a plate which is not only mechanically very strong but also retains its active material within a steel containment which promotes conductivity and minimizes electrode swelling. These plates are then welded to a current carrying bus bar assembly which further ensures the mechanical and electrical stability of the product.

Nickel-cadmium batteries have an exceptionally good lifetime and cycle life because their plates are not gradually weakened by corrosion, as the structural component of the plate is steel. The active material of the plate is not structural, only electrical. The alkaline electrolyte does not react with steel, which means that the supporting structure of the block battery stays intact and unchanged for the life of the battery. There is no corrosion and no risk of “sudden death.”

In contrast, the lead plate of a lead acid battery is both the structure and the active material and this leads to shedding of the positive plate material and eventual structural collapse.
4.2 Separation
Separation between plates is provided by injection molded plastic separator grids, integrating both plate edge insulation and plate separation.

By providing a large spacing between the positive and negative plates and a generous quantity of electrolyte between plates, good electrolyte circulation and gas dissipation are provided, and there is no stratification of the electrolyte as found with lead acid batteries.

4.3 Electrolyte
The electrolyte used in the block battery, which is a solution of potassium hydroxide and lithium hydroxide, is optimized to give the best combination of performance, life, energy efficiency and a wide temperature range.

The concentration of the standard electrolyte is such as to allow the cell to be operated to temperature extremes as low as –20°C (–4°F) and as high as +50°C (+122°F). This allows the very high temperature fluctuation found in certain regions to be accommodated.

For very low temperatures a special high density electrolyte can be used.

The electrode material is less reactive with the alkaline electrolyte (nickel-cadmium secondary batteries) than with acid electrolytes (lead acid secondary batteries).
Furthermore, during charging and discharging in alkaline batteries the electrolyte works mainly as a carrier of oxygen or hydroxyl ions from one electrode to the other; hence the composition or the concentration of the electrolyte does not change noticeably. In the charge/discharge reaction of the nickel-cadmium battery, the potassium hydroxide is not mentioned in the reaction formula. A small amount of water is produced during the charging procedure (and consumed during the discharge). The amount is not enough to make it possible to detect if the battery is charged or discharged by measuring the density of the electrolyte.

Once the battery has been filled with the correct electrolyte either at the battery factory or during the battery commissioning there is no need to check the electrolyte density periodically. The density of the electrolyte in the battery either increases or decreases as the electrolyte level drops because of water electrolysis or evaporation or rises at topping-up. Interpretation of density measurements is difficult and could be misleading.
In most applications the electrolyte will retain its effectiveness for the life of the battery and will never need replacing. However, under certain conditions, such as extended use in high temperature situations, the electrolyte can become carbonated. If this occurs the battery performance can be improved by replacing the electrolyte.

The standard electrolyte used for the first fill in cells is E22 and for replacement in service is E13.

4.4 Terminal pillars
Short terminal pillars are welded to the plate bus bars using a well-established and proven method. These posts are manufactured from steel bar, internally threaded for bolting on connectors, and nickel-plated.

The sealing between the cover and the terminal is provided by a compressed visco-elastic sealing surface held in place by compression lock washers. This assembly is designed to provide satisfactory sealing throughout the life of the product.

4.5 Venting system
The block battery is fitted with a special flame-arresting flip-top vent to give an effective and safe venting system.

4.6 Cell container
The battery is built up using well-proven block battery construction. The tough polypropylene containers are welded together by heat sealing.

The block battery uses 4 plate sizes or plate modules. These are designated module type 1, 2, 3 and 4. They can be recognized from the block dimensions as follows:

<table>
<thead>
<tr>
<th>Block width (mm)</th>
<th>Block height (mm)</th>
<th>Plate module</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>194</td>
<td>1</td>
</tr>
<tr>
<td>123</td>
<td>264</td>
<td>2</td>
</tr>
<tr>
<td>195</td>
<td>349</td>
<td>3</td>
</tr>
<tr>
<td>195</td>
<td>405</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 1 - Correlation between block dimensions and plate module number
In order to provide an optimum solution for the wide range of battery applications which exist, the block battery is constructed in three performance ranges.

<table>
<thead>
<tr>
<th>Saft Nife battery types</th>
<th>L</th>
<th>M</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomy mini maxi</td>
<td>3 h 100 h</td>
<td>30 min 3 h</td>
<td>1 s 30 min</td>
</tr>
<tr>
<td>Use of battery</td>
<td>Power backup</td>
<td>Power backup</td>
<td>Starting, Power backup</td>
</tr>
<tr>
<td>Applications</td>
<td>Engine starting - Switchgear - UPS - Process control - Data and information systems - Emergency lighting - Security and fire alarm systems - Switching and transmission systems - Signaling</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Railways** intercity & urban transport
- **Stationary**
 - **Utilities**
 - electricity, gas, water production & distribution
 - **Oil and gas** offshore & onshore, petrochemical refineries
 - **Industry**
 - chemical, mining, steel metal works
 - **Buildings**
 - public, private
 - **Medical**
 - hospitals, X-ray equipment
 - **Telecom**
 - radio, satellite, cable, repeater stations, cellular base stations
 - **Railroad**
 - substations & signaling
 - **Airports**
 - **Military** all applications
5.1 Type L
The L type is designed for applications where the battery is required to provide a reliable source of energy over relatively long discharge periods. Normally, the current is relatively low in comparison with the total stored energy, and the discharges are generally infrequent. Typical uses are power backup and bulk energy storage.

5.2 Type M
The M type is designed for applications where the batteries are usually required to sustain electrical loads for between 30 minutes to 3 hours or for “mixed” loads which involve a mixture of high and low discharge rates. The applications can have frequent or infrequent discharges. The range is typically used in power backup applications.

5.3 Type H
The H type is designed for applications where there is a demand for a relatively high current over short periods, usually less than 30 minutes in duration. The applications can have frequent or infrequent discharges. The range is typically used in starting and power backup applications.

5.4 Choice of type
In performance terms the ranges cover the full time spectrum from rapid high current discharges of a second to very long low current discharges of many hours. Table 2 shows in general terms the split between the ranges for the different discharge types. The choice is related to the discharge time and the end of discharge voltage. There are, of course, many applications where there are multiple discharges, and so the optimum range type should be calculated. This is explained in the section 7 “Battery sizing”.

<table>
<thead>
<tr>
<th>Voltage</th>
<th>100 hours</th>
<th>50 hours</th>
<th>10 hours</th>
<th>3 hours</th>
<th>1 hour</th>
<th>30 min</th>
<th>10 min</th>
<th>1 sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.05 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.10 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.14 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 - General selection of cell range
6. Operating features

6.1 Capacity
The block battery capacity is rated in ampere-hours (Ah) and is the quantity of electricity at +20°C (+68°F) which it can supply for a 5 hour discharge to 1.0 V after being fully charged for 7.5 hours at 0.2 Cn A. This figure conforms to the IEC 60623 standard.

According to the IEC 60623 (Edition 4), 0.2 Cn A is also expressed as 0.2 It A. The reference test current (It) is expressed as:

\[It = \frac{Cn \text{ Ah}}{1 \text{ h}} \]

where:
- Cn is the rated capacity declared by the manufacturer in ampere-hours (Ah),
- and
- \(n \) is the time base in hours (h) for which the rated capacity is declared.

6.2 Cell voltage
The cell voltage of nickel-cadmium cells results from the electrochemical potentials of the nickel and the cadmium active materials in the presence of the potassium hydroxide electrolyte. The nominal voltage for this electrochemical couple is 1.2 V.

6.3 Internal resistance
The internal resistance of a cell varies with the temperature and the state of charge and is, therefore, difficult to define and measure accurately.

The most practical value for normal applications is the discharge voltage response to a change in discharge current.

The internal resistance of a block battery cell depends on the performance type and at normal temperature has the values given in Table 3 in mΩ per 1/Cn.

To obtain the internal resistance of a cell it is necessary to divide the value from the table by the rated capacity.

For example, the internal resistance of a SBH 118 (module type 3) is given by:

\[\frac{39}{118} = 0.33 \text{ mΩ} \]

The figures of Table 3 are for fully charged cells.

For lower states of charge the values increase. For cells 50% discharged the internal resistance is about 20% higher, and when 90% discharged, it is about 80% higher. The internal resistance of a fully discharged cell has very little meaning.

Reducing the temperature also increases the internal resistance, and at 0°C (+32°F), the internal resistance is about 40% higher.

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Module plate size (see table 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>SBL*</td>
<td>84</td>
</tr>
<tr>
<td>SBM</td>
<td>55</td>
</tr>
<tr>
<td>SBH</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 3 - Internal resistance in mΩ per 1/Cn

* The internal resistances for the SBLE range are included in the commercial data brochure.
6.4 Effect of temperature on performance

Variations in ambient temperature affect the performance of the cell and this needs to be taken into account when sizing the battery.

Low temperature operation has the effect of reducing the performance, but the higher temperature characteristics are similar to those at normal temperatures. The effect of low temperature is more marked at higher rates of discharge.

The factors which are required in sizing a battery to compensate for temperature variations are given in a graphical form in Figure 1(a), L type, Figure 1(b), M type and Figure 1(c), H type for operating temperatures from -20°C to +50°C (-4°F to +122°F).

Figure 1(a) - Temperature de-rating factors for L type cell

Figure 1(b) - Temperature de-rating factors for M type cell

Figure 1(c) - Temperature de-rating factors for H type cell
6.5 Short-circuit values
The typical short-circuit value in amperes for a block battery cell is approximately 9 times the ampere-hour capacity for an L type block, 16 times the ampere-hour capacity for an M type block and 28 times the ampere-hour capacity for an H type block.

The block battery with conventional bolted assembly connections will withstand a short-circuit current of this magnitude for many minutes without damage.

6.6 Open circuit loss
The state of charge of the block cell on open circuit slowly decreases with time due to self-discharge. In practice this decrease is relatively rapid during the first two weeks, but then stabilizes to about 2% per month at +20°C (+68°F).

The self-discharge characteristics of a nickel-cadmium cell are affected by the temperature. At low temperatures, the charge retention is better than at normal temperature, and so the open circuit loss is reduced. However, the self-discharge is significantly increased at higher temperatures.

The typical open circuit loss for the block battery for a range of temperatures which may be experienced in a stationary application is shown in Figure 2.

6.7 Cycling
The block battery is designed to withstand the wide range of cycling behavior encountered in stationary applications. This can vary from low depth of discharges to discharges of up to 100% and the number of cycles that the product will be able to provide will depend on the depth of discharge.

The less deeply a battery is cycled, the greater the number of cycles it is capable of performing before it is unable to achieve the minimum design limit. A shallow cycle will give many thousands of operations, whereas a deep cycle will give only hundreds of operations.

Figure 3 gives typical values for the effect of depth of discharge on the available cycle life, and it is clear that when sizing the battery for a cycling application, the number and depth of cycles have an important consequence on the predicted life of the system.

Figure 2 - Capacity loss on open circuit stand

Figure 3 - Typical cycle life versus depth of discharge
6.8 Effect of temperature on lifetime

The block battery is designed as a twenty year life product, but as with every battery system, increasing temperature reduces the expected life. However, the reduction in lifetime with increasing temperature is very much lower for the nickel-cadmium battery than the lead acid battery.

The reduction in lifetime for the nickel-cadmium battery, and for comparison, a high quality lead acid battery is shown graphically in Figure 4. The values for the lead acid battery are as supplied by the industry and found in Eurobat and IEEE documentation.

In general terms, for every 9°C (16.2°F) increase in temperature over the normal operating temperature of +25°C (+77°F), the reduction in service life for a nickel-cadmium battery will be 20%, and for a lead acid battery will be 50%.

In high temperature situations, therefore, special consideration must be given to dimensioning the nickel-cadmium battery. Under the same conditions, the lead acid battery is not a practical proposition, due to its very short lifetime. The VRLA battery, for example, which has a lifetime of about 7 years under good conditions, has this reduced to less than 1 year, if used at +50°C (+122°F).
6.9 Water consumption and gas evolution

During charging, more ampere-hours are supplied to the battery than the capacity available for discharge. These additional ampere-hours must be provided to return the battery to the fully charged state and, since they are not all retained by the cell and do not all contribute directly to the chemical changes to the active materials in the plates, they must be dissipated in some way. This surplus charge, or overcharge, breaks down the water content of the electrolyte into oxygen and hydrogen, and pure distilled or deionized water has to be added to replace this loss.

Water loss is associated with the current used for overcharging. A battery which is constantly cycled, i.e. is charged and discharged on a regular basis, will consume more water than a battery on standby operation.

In theory, the quantity of water used can be found by the Faradic equation that each ampere-hour of overcharge breaks down 0.366 cm3 of water. However, in practice, the water usage will be less than this, as the overcharge current is also needed to counteract self-discharge of the electrodes.

The overcharge current is a function of both voltage and temperature, so both have an influence on the consumption of water. Figure 5 gives typical water consumption values over a range of voltages for different cell types.

Example: An SBM 161 is floating at 1.43 V/cell. The electrolyte reserve for this cell is 500 cm3. From Figure 5, an M type cell at 1.43 V/cell will use 0.27 cm3 / month for one Ah of capacity. Thus an SBM 161 will use 0.27 x 161 = 43.5 cm3 per month and the electrolyte reserve will be used in

\[
\frac{500}{43.5} = 11.5 \text{ months.}
\]

The gas evolution is a function of the amount of water electrolyzed into hydrogen and oxygen and are predominantly given off at the end of the charging period. The battery gives off no gas during a normal discharge.

The electrolysis of 1 cm3 of water produces 1865 cm3 of gas mixture and this gas mixture is in the proportion of $\frac{2}{3}$ hydrogen and $\frac{1}{3}$ oxygen. Thus the electrolysis of 1 cm3 of water produces 1243 cm3 of hydrogen.
7. Battery sizing principles in stationary standby applications

There are a number of methods which are used to size nickel-cadmium batteries for standby floating applications. The method employed by Saft is the IEEE 1115 recommendation which is accepted internationally. This method takes into account multiple discharges, temperature de-rating, performance after floating and the voltage window available for the battery.

A significant advantage of the nickel-cadmium battery compared to a lead acid battery, is that it can be fully discharged without any inconvenience in terms of life or recharge. Thus, to obtain the smallest and least costly battery, it is an advantage to discharge the battery to the lowest practical value in order to obtain the maximum energy from the battery.

The principle sizing parameters which are of interest are:

7.1 The voltage window
This is the maximum voltage and the minimum voltage at the battery terminals acceptable for the system. In battery terms, the maximum voltage gives the voltage which is available to charge the battery, and the minimum voltage gives the lowest voltage acceptable to the system to which the battery can be discharged. In discharging the nickel-cadmium battery, the cell voltage should be taken as low as possible in order to find the most economic and efficient battery.

7.2 Discharge profile
This is the electrical performance required from the battery for the application. It may be expressed in terms of amperes for a certain duration, or it may be expressed in terms of power, in watts or kW, for a certain duration. The requirement may be simply one discharge or many discharges of a complex nature.

7.3 Temperature
The maximum and minimum temperatures and the normal ambient temperature will have an influence on the sizing of the battery. The performance of a battery decreases with decreasing temperature and sizing at a low temperature increases the battery size. Temperature de-rating curves are produced for all cell types to allow the performance to be recalculated.
7.4 State of charge or recharge time
Some applications may require that the battery shall give a full duty cycle after a certain time after the previous discharge. The factors used for this will depend on the depth of discharge, the rate of discharge, and the charge voltage and current. A requirement for a high state of charge does not justify a high charge voltage if the result is a high end of discharge voltage.

7.5 Ageing
Some customers require a value to be added to allow for the ageing of the battery over its lifetime. This may be a value required by the customer, for example 10%, or it may be a requirement from the customer that a value is used which will ensure the service of the battery during its lifetime. The value to be used will depend on the discharge rate of the battery and the conditions under which the discharge is carried out.

7.6 Floating effect
When a nickel-cadmium cell is maintained at a fixed floating voltage over a period of time, there is a decrease in the voltage level of the discharge curve. This effect begins after one week and reaches its maximum in about 3 months. It can only be eliminated by a full discharge/charge cycle, and it cannot be eliminated by a boost charge. It is therefore necessary to take this into account in any calculations concerning batteries in float applications.

As the effect of reducing the voltage level is to reduce the autonomy of the battery, the effect can be considered as reducing the performance of the battery and so performance down-rating factors are used.
8. Battery charging

8.1 Charging generalities
The block battery can be charged by all normal methods. Generally, batteries in parallel operation with charger and load are charged with constant voltage. In operations where the battery is charged separately from the load, charging with constant current or declining current is possible. High-rate charging or overcharging will not damage the battery, but excessive charging will increase water consumption to some degree.

8.2 Constant voltage charging methods
Batteries in stationary applications are normally charged by a constant voltage float system and this can be of two types: the two-rate type, where there is an initial constant voltage charge followed by a lower voltage maintenance charge. This allows the battery to be charged quickly, and yet, have a low water consumption due to the low maintenance charge or float voltage level.

The values used for the block battery ranges for single and two-rate charge systems are as shown in Table 4 below.

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Single level (V/cell)</th>
<th>Two level (V/cell)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>max</td>
</tr>
<tr>
<td>L</td>
<td>1.43</td>
<td>1.50</td>
</tr>
<tr>
<td>M</td>
<td>1.43</td>
<td>1.50</td>
</tr>
<tr>
<td>H</td>
<td>1.43</td>
<td>1.50</td>
</tr>
</tbody>
</table>

Table 4 - Charge and float voltages for the block battery ranges

To minimize the water usage, it is important to use a low charge voltage per cell, and so the minimum voltage for the single level and the two level charge voltage is the normally recommended value. This also helps within a voltage window to obtain the lowest, and most effective, end of discharge voltage per cell [see section 7 Battery sizing].

The values given as maximum are those which are acceptable to the battery, but would not normally be used in practice, particularly for the single level, because of high water usage.
8.3 Charge acceptance
A discharged cell will take a certain time to achieve a full state of charge. Figures 6(a), (b) and (c) give the capacity available for typical charging voltages recommended for the block battery range during the first 30 hours of charge from a fully discharged state.

Figure 6(a) - Typical recharge times from a fully discharged state for the L block

Figure 6(b) - Typical recharge times from a fully discharged state for the M block
These graphs give the recharge time for a current limit of 0.2 C₅ A. Clearly, if a lower value for the current is used, e.g. 0.1 C₅ A, then the battery will take longer to charge. If a higher current is used then it will charge more rapidly. This is not in general a pro rata relationship due to the limited charging voltage.

The charge time for an M type plate at different charge regimes for a fixed voltage is given in Figure 6(d).

If the application has a particular recharge time requirement then this must be taken into account when calculating the battery.
8.4 Charge efficiency
The charge efficiency of the battery is dependent on the state of charge of the battery and the temperature. For much of its charge profile, it is recharged at a high level of efficiency.

In general, at states of charge less than 80% the charge efficiency remains high, but as the battery approaches a fully charged condition, the charging efficiency falls off.

8.5 Temperature effects
As the temperature increases, the electrochemical behavior becomes more active, and so, for the same floating voltage, the current increases. As the temperature is reduced then the reverse occurs. Increasing the current increases the water loss, and reducing the current creates the risk that the cell will not be sufficiently charged.

For standby application, it is normally not required to compensate the charging voltage with the temperature. However if water consumption is of main concern, temperature compensation should be used if the battery is operating at high temperature such as +35°C (+95°F). At low temperature (< 0°C/+32°F), there is a risk of poor charging and it is recommended either to adjust the charging voltage or to compensate the charging voltage with the temperature.

Value of the temperature compensation: –3 mV/°C (–1.7 mV/°F), starting from an ambient temperature of +20°C to +25°C (+68°F to +77°F).

8.6 Commissioning *
It is recommended that a good first charge should be given to the battery. This is a once only operation, and is essential to prepare the battery for its long service life. It is also important for discharged and empty cells which have been filled, as they will be in a totally discharged state.

A constant current first charge is preferable and this should be such as to supply 200% of the rated capacity of the cell. Thus, a 250 Ah cell will require 500 ampere-hours’ input, e.g. 50 A for 10 hours.

* Please refer to the installation and operating instructions [see section 10].
9. Special operating factors

9.1 Electrical abuse

Ripple effects
The nickel-cadmium battery is tolerant to high ripple and will accept ripple currents of up to 0.2 C₅ Aₑᵥ. In fact, the only effect of a high ripple current is that of increased water usage. Thus, in general, any commercially available charger or generator can be used for commissioning or maintenance charging of the block battery. This contrasts with the valve-regulated lead acid battery (VRLA) where relatively small ripple currents can cause battery overheating, and will reduce life and performance.

Over-discharge
If more than the designed capacity is taken out of a battery then it becomes deep-discharged and reversed. This is considered to be an abuse situation for a battery and should be avoided. In the case of lead acid batteries this will lead to failure of the battery and is unacceptable. The block battery will not be damaged by over-discharge but must be recharged to compensate for the over-discharge.

Overcharge
In the case of the block battery, with its generous electrolyte reserve, a small degree of overcharge over a short period will not significantly alter the maintenance period. In the case of excessive overcharge, water replenishment is required, but there will be no significant effect on the life of the battery.

9.2 Mechanical abuse

Shock loads
The block battery concept has been tested to IEC 68-2-29 (bump tests at 5 g, 10 g and 25 g) and IEC 77 (shock test 3 g), where g = acceleration.

Vibration resistance
The block battery concept has been tested to IEC 77 for 2 hours at 1 g, where g = acceleration.

External corrosion
The block battery is manufactured in durable polypropylene. All external metal components are nickel-plated or stainless steel, protected by an anti-corrosion oil, and then protected by a rigid plastic cover.
10. Installation and operating instructions

Important recommendations

- Never allow an exposed flame or spark near the batteries, particularly while charging.
- Never smoke while performing any operation on the battery.
- For protection, wear rubber gloves, long sleeves, and appropriate splash goggles or face shield.
- The electrolyte is harmful to skin and eyes. In the event of contact with skin or eyes, wash immediately with plenty of water. If eyes are affected, flush with water, and obtain immediate medical attention.
- Remove all rings, watches and other items with metal parts before working on the battery.
- Use insulated tools.
- Avoid static electricity and take measures for protection against electric shocks.
- Discharge any possible static electricity from clothing and/or tools by touching an earth-connected part “ground” before working on the battery.

10.1 Receiving the shipment

Unpack the cells immediately upon arrival. Do not overturn the package. Transport seals are located under the cover of the vent plug.

- If the cells are shipped filled and charged, the cells are ready for assembly. Remove the plastic transport seals only before use.

- If the cells are shipped empty and discharged, do not remove the plastic transport seals until ready to fill the cells.

The cells must never be charged with the transport seals in place as this can cause permanent damage.

10.2 Storage

Store the battery indoors in a dry, clean, cool location (0°C to +30°C / +32°F to +86°F) and well ventilated space on open shelves.

Do not store in direct sunlight or expose to excessive heat.

- Cells filled and charged

 - If cells are stored filled, they must be fully charged prior to storage.
 - Cells may be stored filled and charged for a period not exceeding 12 months from date of dispatch from factory.

Storage of a filled battery at temperatures above +30°C (+86°F) can result in loss of capacity. This can be as much as 5% per 10°C (18°F) above +30°C (+86°F) per year.

- Cells empty and discharged

 - Saft recommends to store cells empty and discharged. This ensures compliance with IEC 60623 section 4.9 (storage).
 - Cells can be stored like this for many years.

- When deliveries are made in cardboard boxes, store without opening the boxes.
- When deliveries are made in plywood boxes, open the boxes before the storage. The lid and the packing material on top of the cells must be removed.
10.3 Electrolyte / cell oil

Cells delivered filled and charged:
Check the level of electrolyte. It should not be more than 20 mm below the maximum level mark (upper). If this is not the case, adjust the level with distilled or deionized water. Cells delivered filled have already cell oil in place.

In case of spillage of electrolyte during the transport, the cells have to be topped-up with E22 electrolyte. Fill the cells about 20 mm above the minimum level mark (lower) with electrolyte. Wait 4 hours and adjust if necessary before commissioning.

Cells delivered empty and discharged:
If the electrolyte is supplied dry, prepare it according to its separate instructions sheet. The electrolyte to be used is E22. Remove the transport seals just before filling.

Fill the cells about 20 mm above the minimum level mark (lower) with electrolyte.

Wait 4 to 24 hours and adjust if necessary before commissioning.

It is recommended to add the cell oil after the commissioning charge, with the syringe, according to the quantity indicated in the Installation and Operating Instructions sheet.

10.4 Installation

10.4.1 Location
Install the battery in a dry and clean room. Avoid direct sunlight and heat. The battery will give the best performance and maximum service life when the ambient temperature is between +10°C to +30°C (+50°F to +86°F).

10.4.2 Ventilation
During the last part of charging, the battery is emitting gases (oxygen and hydrogen mixture). At normal float-charge the gas evolution is very small but some ventilation is necessary.

Note that special regulations for ventilation may be valid in your area depending on the application.

10.4.3 Mounting
Verify that cells are correctly interconnected with the appropriate polarity. The battery connection to load should be with nickel plated cable lugs. Recommended torques for terminal bolts are:
- M 6 = 11 ± 1.1 N.m (97.4 ± 9.8 lbf.in)
- M 8 = 20 ± 2 N.m (177.0 ± 17.7 lbf.in)
- M10 = 30 ± 3 N.m (265.0 ± 26.6 lbf.in)

The connectors and terminals should be corrosion-protected by coating with a thin layer of anti-corrosion oil.

Remove the transport seals and close the vent plugs.

10.5 Commissioning
Verify that the transport seals are removed, the vents are closed and the ventilation is adequate during this operation.

A good commissioning is important. Charge at constant current is preferable.

If the current limit is lower than indicated in the Installation and Operating Instructions sheet, charge for a proportionally longer time.

For cells filled and charged by the factory and stored less than 6 months:
- Constant current charge:
 Charge for 10 h at 0.2 C₅ A recommended (see the Installation and Operating Instructions sheet).

Note: At the end of the charge, the cell voltage may reach the level of 1.85 V per cell, thus the charger shall be able to supply such voltage.
When the charger maximum voltage setting is too low to supply constant current charging, divide the battery
into two parts to be charged individually.

- **Constant voltage charge:**
 Charge for 24 h at 1.65 V/cell, current limited to 0.2 C₅ A or charge for 48 h at 1.55 V/cell, current limited to 0.2 C₅ A (see the Installation and Operating Instructions sheet).

 - a) Charge for 30 h at 1.65 V/cell with current limited to 0.2 C₅ A (see the Installation and Operating Instructions sheet).
 - b) Discharge at 0.2 C₅ A to 1.0 V/cell
 - c) Charge for 30 h at 1.65 V/cell with current limited to 0.2 C₅ A or charge for 48 h at 1.55 V/cell current limited to 0.2 C₅ A (see the Installation and Operating Instructions sheet).

- **Constant current charge:**
 a) Charge for 10 h at 0.2 C₅ A recommended (see the Installation and Operating Instructions sheet).
 b) Discharge at 0.2 C₅ A to 1.0 V/cell
 c) Charge for 10 h at 0.2 C₅ A recommended (see the Installation and Operating Instructions sheet).

Note: At the end of the charge, the cell voltage may reach the level of 1.85 V per cell, thus the charger shall be able to supply such voltage.

When the charger maximum voltage setting is too low to supply constant current charging, divide the battery into two parts to be charged individually.

For capacity test purposes, the battery has to be charged in accordance with IEC 60623 section 4.

10.6 Charging in service

- **Continuous parallel operation,** with occasional battery discharge. Recommended charging voltage (+20°C to +25°C / +68°F to +77°F):

 - For two level charge:
 - float level: 1.42 ± 0.01 V/cell for L cells
 - high level: 1.40 ± 0.01 V/cell for M and H cells
 - high voltage will increase the speed and efficiency of the recharging.

 - For single level charge:
 - float level: 1.43 - 1.50 V/cell.

- **Buffer operation,** where the load exceeds the charger rating.

 Recommended charging voltage (+20°C to +25°C / +68°F to +77°F): 1.50 - 1.60 V/cell.
10.7 Periodic maintenance

- Keep the battery clean using only water. Do not use a wire brush or solvents of any kind. Vent plugs can be rinsed in clean water if necessary.

- Check the electrolyte level. Never let the level fall below the minimum level mark (lower). Use only distilled or deionized water to top-up. Experience will tell the time interval between topping-up.

Note: Once the battery has been filled with the correct electrolyte either at the battery factory or during the battery commissioning, there is no need to check the electrolyte density periodically. Interpretation of density measurements is difficult and could be misleading.

- Check the charging voltage. If a battery is parallel connected, it is important that the recommended charging voltage remains unchanged. The charging voltage should be checked and recorded at least once yearly. If a cell float voltage is found below 1.35 V, high-rate charge is recommended to apply to the cell concerned.

- Check every two years that all connectors are tight. The connectors and terminal bolts should be corrosion-protected by coating with a thin layer of anti-corrosion oil.

- High water consumption is usually caused by high improper voltage setting of the charger.

10.8 Changing electrolyte

In most stationary battery applications, the electrolyte will retain its effectiveness for the life of the battery. However, under special battery operating conditions, if the electrolyte is found to be carbonated, the battery performance can be restored by replacing the electrolyte.

The electrolyte type to be used for replacement in these cells is: E13.

Refer to "Electrolyte Instructions".
11. Maintenance of block batteries in service

In a correctly designed standby application, the block battery requires the minimum of attention. However, it is good practice with any system to carry out an inspection of the system at least once per year, or at the recommended topping-up interval period to ensure that the charger, the battery and the auxiliary electronics are all functioning correctly.

When this inspection is carried out, it is recommended that certain procedures should be carried out to ensure that the battery is maintained in a good state.

11.1 Cleanliness/mechanical

Cells must be kept clean and dry at all times, as dust and damp cause current leakage. Terminals and connectors should be kept clean, and any spillage during maintenance should be wiped off with a clean cloth. The battery can be cleaned, using water. Do not use a wire brush or a solvent of any kind. Vent caps can be rinsed in clean water, if necessary.

Check that the flame-arresting vents are tightly fitted and that there are no deposits on the vent caps.

Terminals should be checked for tightness, and the terminals and connectors should be corrosion-protected by coating with a thin layer of neutral grease or anti-corrosion oil.

11.2 Topping-up

Check the electrolyte level. Never let the level fall below the lower MIN mark. Use only approved distilled or deionized water to top-up. Do not overfill the cells.

Excessive consumption of water indicates operation at too high a voltage or too high a temperature. Negligible consumption of water, with batteries on continuous low current or float charge, could indicate under-charging. A reasonable consumption of water is the best indication that a battery is being operated under the correct conditions. Any marked change in the rate of water consumption should be investigated immediately.

The topping-up interval can be calculated as described in section 6.9. However, it is recommended that, initially, electrolyte levels should be monitored monthly to determine the frequency of topping-up required for a particular installation.

Saft has a full range of topping-up equipment available to aid this operation.
11.3 Capacity check

Electrical battery testing is not part of normal routine maintenance, as the battery is required to give the back up function and cannot be easily taken out of service.

However, if a capacity test of the battery is needed, the following procedure should be followed:

a) Discharge the battery at the rate of 0.1 \(C_5 \) to 0.2 \(C_5 \) A (10 to 20 A for a 100 Ah battery) to a final average voltage of 1.0 V/\(\text{cell} \) (i.e. 92 volts for a 92 cell battery)

b) Charge 200\% (i.e. 200 Ah for a 100 Ah battery at the same rate used in a)

c) Discharge at the same rate used in a), measuring and recording current, voltage and time every hour, and more frequently towards the end of the discharge. This should be continued until a final average voltage of 1.0 V/\(\text{cell} \) is reached. The overall state of the battery can then be seen, and if individual cell measurements are taken, the state of each cell can be observed.

11.4 Recommended maintenance procedure

In order to obtain the best from your battery, the following maintenance procedure is recommended.

<table>
<thead>
<tr>
<th>Yearly</th>
</tr>
</thead>
<tbody>
<tr>
<td>check charge voltage settings</td>
</tr>
<tr>
<td>check cell voltages</td>
</tr>
<tr>
<td>(50 mV deviation from average is acceptable)</td>
</tr>
<tr>
<td>check float current of the battery</td>
</tr>
<tr>
<td>check electrolyte level</td>
</tr>
<tr>
<td>high voltage charge if agreed for application</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Every 2 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>clean cell lids and battery area</td>
</tr>
<tr>
<td>check torque values, grease terminals and connectors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Every 5 years or as required</th>
</tr>
</thead>
<tbody>
<tr>
<td>capacity check</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>As required</th>
</tr>
</thead>
<tbody>
<tr>
<td>top-up with water according to defined period (depend on float voltage, cycles and temperature)</td>
</tr>
</tbody>
</table>

It is also recommended that a maintenance record be kept which should include a record of the temperature of the battery room.
In a world where autonomous sources of electric power are ever more in demand, Saft batteries provide an environmentally responsible answer to these needs. Environmental management lies at the core of Saft’s business and we take care to control every stage of a battery’s life-cycle in terms of potential impact. Environmental protection is our top priority, from design and production through end-of-life collection, disposal and recycling.

Our respect for the environment is complemented by an equal respect for our customers. We aim to generate confidence in our products, not only from a functional standpoint, but also in terms of the environmental safeguards that are built into their life-cycle. The simple and unique nature of the battery components make them readily recyclable and this process safeguards valuable natural resources for future generations.

In partnership with collection agencies worldwide, Saft organizes retrieval from pre-collection points and the recycling of spent Saft batteries. Information about Saft’s collection network can be found on our web site:

www.saftbatteries.com

Ni-Cd batteries must not be discarded as harmless waste and should be treated carefully in accordance with local and national regulations. Your Saft representative can assist with further information on these regulations and with the overall recycling procedure.
Saft is committed to the highest standards of environmental stewardship.

As part of its environmental commitment, Saft gives priority to recycled raw materials over virgin raw materials, reduces its plants’ releases to air and water year after year, minimizes water usage, reduces fossil energy consumption and associated CO₂ emissions, and ensures that its customers have recycling solutions available for their spent batteries.

Regarding industrial Ni-Cd batteries, Saft has had partnerships for many years with collection companies in most EU countries, in North America and in other countries. This collection network receives and dispatches our customers’ batteries at the end of their lives to fully approved recycling facilities, in compliance with the laws governing trans-boundary waste shipments.

This collection network is undergoing minor adaptations to meet the requirements of the EU batteries directive. A list of our collection points is available on our web site.

In other countries, Saft assists users of its batteries in finding environmentally sound recycling solutions. Please contact your sales representative for further information.